Среднее геометрическое - определение, формула и программа расчета онлайн
Среднее геометрическое
Предлагаемая здесь программа, помимо расчета среднего геометрического, умеет еще и приводить исходные данные к стандартному виду, а так же упорядочивать их по возрастанию или убыванию...
Содержание:
- Определение среднего геометрического
- Расчет среднего геометрического
- Свойства среднего геометрического
- Прикладное значение среднего геометрического
Среднее геометрическое или среднее пропорциональное используется человечеством в архитектурных, землемерных и инженерных расчетах не менее 2500 лет. Об этом достоверно известно благодаря математическому трактату Евклида "Начала".
В своей второй теореме Евклид доказывает, что в прямоугольном треугольнике высота проведенная из прямого угла (рисунок) делит противоположную сторону так что:
d · e
Собственно говоря, благодаря второй теореме Евклида среднее геометрическое и получило свое название. В древнем мире математики ограничивалось только использованием корня квадратного (геометрия) и корня кубического (стереометрия).
Вообще говоря, извлечение корня с различными целыми показателями является частным случаем дробной степени. Но к такому пониманию этих алгебраических операции математики подошли только в семнадцатом веке. Неоценимый вклад в достижении обобщенного понимания степенных алгебраических операции внес Рене Декарт.
В свете современных представлений:
Среднее геометрическое значение множества положительных вещественных чисел определяется как результат взаимного умножения этих чисел и извлечения из произведения корня с показателем равным количеству чисел:
a1 · a2 · … · an
∏
i=1
n
Таким образом, мы имеем дело исключительно с положительными вещественными числами и находим такое число, что при замене каждого из этих чисел их произведение не изменяется.
Расчет среднего геометрического
Для того чтобы начать онлайн расчет среднего геометрического введите исходные числа в одно из полей ввода-вывода данных.
В первое поле можно ввести последовательность чисел, разделенных точкой с запятой (программа попытается так же преобразовать к стандартному виду, например, вставленную копию последовательности чисел с плавающей точкой, разделенных пробелами, запятой или точкой с запятой).
Во второе поле можно вводить числа по одному - они автоматически будут добавляться к данным первого поля, если расчет не запустился автоматически, кликните по зеленой кнопке, показывающей количество чисел в исследуемом массиве:
Введите исходные данные
Введите число
Что-то пошло не так...
Прямое восхождение не может быть больше 24 часов,
минуты и секунды больше 60,
а склонение по абсолютной величине не должно быть больше 90°
Среднее геометрическое, aср. геом
Для наглядной демонстрации правила о средних
aср. геом ≤ a ср. арифм
выводим так же результат расчета среднего арифметического:
Среднее арифметическое [1], aср. арифм
aсреднее геометрическое ≤ a среднее арифметическое
Design by Sergey Ov for abc2home.ru
ВНИМАНИЕ! При перезагрузке страницы введенная информация не сохраняется, если Вы не сгенерировали код для записи результатов работы в командной строке:
Сохранить расчет среднего геометрического в истории браузера
Адресную строку с кодом из Ваших данных Вы можете переслать на любое устройство и воспроизвести на нем результаты расчетов
После того как будут введены хотя бы два исходных числа, цвет квадратной кнопки на поле ввода данных должен поменяться с оранжевого на зеленый, и автоматически начнется расчет среднего геометрического и сопутствующих параметров, если это не произошло, то кликните по зеленому полю кнопки.
Страницы по теме "Расчет средних значений"
- Среднее арифметическое - расчет онлайн, определение, формула
- Среднеквадратическое отклонение - расчет онлайн, определение, формула
- Среднее геометрическое - расчет онлайн, определение, формула
- Среднее гармоническое и среднее степенное - расчет онлайн, определения, формулы
- Среднее квадратическое - расчет онлайн, определение, формула
Свойства среднего геометрического
1. Среднее геометрическое значение множества заданных неотрицательных чисел лежит между минимальным и максимальным числами из этого множества.
2. Кроме того среднее геометрическое подчиняется неравенству о средних для множества положительных вещественных чисел
amin ≤ aср. гарм ≤ aср. геом ≤ aср. арифм ≤ a ср.квадр ≤ a max [2] ,
то есть для любого множества положительных чисел среднее геометрическое никогда не бывает больше среднего арифметического [1]:
a1 · a2 · … · an
n
Прикладное значение среднего геометрического
Среднее геометрическое широко используется в демографической статистике, моделирований социального развития общества.
С применением среднего геометрического в экономике
расcчитываются финансовые индексы, в физике - коэффициент преломления антибликового напыления, а в вычислительной математике осуществляется сглаживание шумов.
P.S. На этой странице используется Бета версия программы расчета среднего геометрического, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).
1. Среднее арифметическое значение (чаще используется термин, просто, "среднее арифметическое" или "среднее") множества заданных чисел определяется как число равное сумме всех чисел множества, делённой на их количество:
n
2. Среднее степенное значение sd порядка (степени) d от множества заданных чисел a1+ a2+ …+ an определяется формулой:
∑
i=1
d
Среднее арифметическое является степенным средним c d = 1, среднее квадратическое - d = 2, среднее гармоническое можно считать степенным средним порядка d = -1.
● Главная
▸ Статьи
▸ Блог
▸ Копилка
✔ Среднее геометрическое - расчет онлайн