Среднее квадратическое - определение, формула и программа расчета онлайн
Среднее квадратическое
Предлагаемая здесь программа, помимо расчета среднего квадратического, умеет еще и приводить исходные данные к стандартному виду, а так же упорядочивать их по возрастанию или убыванию...
Содержание:
- Определение среднего квадратического
- Свойства среднего квадратического
- Расчет среднего квадратического
- Прикладное значение среднего квадратического
Среднее квадратическое, как правило, используется тогда, когда смысловое значение имеет квадрат от значений исходной последовательности.
Рассмотрим такую задачу:
Из конверта выпало 2 квадратика со стороной 1 см, затем большой квадратик со стороной 4 см и еще 2 односантиметровых - всего 5 квадратиков.
Какова должна быть сторона у 5 одинаковых квадратиков, занимающих ту же площадь (рисунок на заставке)?
Если предположить, что это будет средняя длина сторон исходных квадратиков
(1+1+4+1+1)/5 = 1,6
то сильно ошибемся: Sобщ ср дл = (1,6)2 × 5 = 12,8.
В то время как
Sобщ кв = (1)2+(1)2+(4)2+(1)2+(1)2=20; 20 > 12,8
Значит длина стороны одинаковых квадратиков должна быть равна корню квадратному из Sобщ кв/5, то есть (20/5)1/2 = (4)1/2 = 2 (см) - эта длина и есть среднее квадратическое от сторон квадратов!
Прежде чем начать онлайн расчеты будет уместно вспомнить строгое определение предмета счета:
Среднее квадратическое значение множества заданных чисел определяется как число равное квадратному корню от суммы квадратов этих чисел, делённой на их количество:
a12 + a22 + … + an2
n
Можно сказать, что среднее квадратическое равно квадратному корню из среднего арифметического[1] квадратов заданных чисел a1+ a2+ …+ an и является частным случаем среднего степенного[2].
Свойства среднего квадратического
1. Среднее квадратическое значение множества заданных неотрицательных чисел лежит между минимальным и максимальным числами из этого множества.
2. Кроме того среднее квадратическое подчиняется неравенству о средних, то есть для любого множества чисел оно не меньше среднего арифметического:
n
a12 + a22 + … + an2
n
Расчет среднего квадратического
Для начала расчета введите исходные числа в одно из полей ввода-вывода данных.
В первое поле можно ввести последовательность чисел, разделенных точкой с запятой (программа попытается так же преобразовать к стандартному виду, например, вставленную копию последовательности чисел с плавающей точкой, разделенных пробелами, запятой или точкой с запятой).
Во второе поле можно вводить числа по одному - они автоматически будут добавляться к данным первого поля, если расчет не запустился автоматически, кликните по зеленой кнопке, показывающей количество чисел в исследуемом массиве:
Введите исходные данные
Введите число
Что-то пошло не так...
Прямое восхождение не может быть больше 24 часов,
минуты и секунды больше 60,
а склонение по абсолютной величине не должно быть больше 90°
Среднее квадратическое, aср.квадр
Для наглядной демонстрации правила о средних
aср. арифм ≤ a ср.квадр
выводим так же результат расчета среднего арифметического:
Среднее арифметическое, aср. арифм
aсреднее арифметическое ≤ a среднее квадратическое
Design by Sergey Ov for abc2home.ru
ВНИМАНИЕ! При перезагрузке страницы введенная информация не сохраняется, если Вы не сгенерировали код для записи результатов работы в командной строке:
Сохранить расчет среднего квадратического в истории браузера
Адресную строку с кодом из Ваших данных Вы можете можете переслать на любое устройство и воспроизвести на нем результаты расчетов
После того как будут введены хотя бы два исходных числа цвет квадратной кнопки на поле ввода данных должен поменяться с оранжевого на зеленый и автоматически начнется расчет среднего квадратического и сопутствующих параметров, если это не произошло, то кликните по зеленому полю кнопки.
Страницы по теме "Расчет средних значений"
- Среднее арифметическое - расчет онлайн, определение, формула
- Среднеквадратическое отклонение - расчет онлайн, определение, формула
- Среднее геометрическое - расчет онлайн, определение, формула
- Среднее гармоническое и среднее степенное - расчет онлайн, определения, формулы
- Среднее квадратическое - расчет онлайн, определение, формула
Прикладное значение среднего квадратического
Среднее квадратическое от отклонений значений исследуемых данных находит широкое прикладное применение в метрологии и статистике.
При обработке результатов измерений во многих случаях их окончательные значения определяются как среднее арифметическое от значений, полученных в результате эксперимента, при этом среднеквадратическое отклонение[3],[4] величин будет являться оценкой ошибки измерений.
В свою очередь на основе минимизации среднеквадратических отклонений в 19 веке был разработан метод наименьших квадратов, который нашел широкое применение в таких областях как статистический, регрессионный анализ, обработка экспериментальных данных и вычислительная математика.
P.S. На этой странице используется Бета версия программы расчета среднего квадратического, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).
1. Среднее арифметическое значение (чаще используется термин, просто, "среднее арифметическое" или "среднее") множества заданных чисел определяется как число равное сумме всех чисел множества, делённой на их количество:
n
2. Среднее степенное значение sd порядка (степени) d от множества заданных чисел a1+ a2+ …+ an определяется формулой:
∑
i=1
d
Среднее арифметическое является степенным средним c d = 1, среднее квадратическое - d = 2, среднее гармоническое можно считать степенным средним порядка d = -1.
3. Если вычислено арифметическое среднее заданного множества чисел, то во многих случаях, становится желательной оценка рассеяния значений этих чисел относительно среднего. Оценка расходимости квадратов значений этих чисел от среднего и является оценкой дисперсии.
Вообще термин дисперсия появился в рамках теорий вероятностей. Одной из ее основополагающих характеристик является дисперсия случайной величины как мера разброса значений случайной величины относительно её математического ожидания.
Не углубляясь в дебри Тер-Вера, здесь приводим только используемую для наших расчетов формулу дисперсии:
n
4. Среднеквадратическое отклонение σ вычисляется как корень квадратный от дисперсий и возвращает нас в область сопоставимых со средним арифметическим величин:
(a1 - acp)2 + (a2 - acp)2 + …+ (an - acp)2
n
● Главная
▸ Статьи
▸ Блог
▸ Копилка
✔ Среднее квадратическое